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We're here!




Overview

e Goals of NanED life science work package

* Basel NanED team & infrastructure

* Introduction to protein structure

* Diffraction methods for determining protein structure

* International developments since submission of the NanED proposal
* Some adaptations to WP4



Goals of the NanED life science WP2

ESR 14:

* Experimental phasing of protein crystals by nanobeam diffraction
(data collection protocols and algorithms)

e Extend the method to non-crystalline samples

ESR 15:

* Optimise data acquisition parameters for rotation & nanobeam
diffraction



Swiss WP2 team

Funded by ITN:
* Senik Metinyan (ESR 14)
* Amatassalam Ben Merien (ESR 15)

Funded by SNF:

* Meng Ge (postdoc with expertise in nanocrystallography)

» Pavel Filipcik (postdoc with experience in single particle cryo-EM & nanocrystallography)
* Min Chevalier Kwon (PhD student)

Funded by PSI:
* Eric van Genderen (scientist/engineer: data collection with hybrid pixel detectors)

* Burak Demir (Master student NanoScience)



Basel WP2 infrastructure

AS| CheeTah MR3 hybrid
pixel counting detector
(512x512; 2’000 fps)

CEOS CEFID
energy filter

Jeol F200 Being installed now;
ready for research: PSI JUNGFRAU charge
March 2022 integrating hybrid pixel detector

(1°024x1’536; 2’000 fps)



Introduction to protein structure

(a) C,, backbone trace (b) Ball and stick
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3D representations of protein structure



a-helix, B-sheet & loop com

a-helix, B-sheet & loop

protein folding domai
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Examples of protein folds

Genome sequencing
indicates there are
between 2’000 and
10’000 natural
protein folding
patterns.

Most of these folds

are known




Domains combine into dynamic, functional structures

Example: human mitochondrial
LonP1 protease in 8 different
conformations




Levinthal paradox

Per amino acid there are 3 possible (¢, v)
combinations: helix, sheet & loop

- A protein with N amino acids, should therefore
have at least 3N different possible conformations

- How is the proper conformation achieved???

- Levinthal paradox: if all possible conformations
would need to be sampled until the right one is
found, the age of the universe would be too short
for even a small protein to fold into its active
conformation.

Flat energy Smooth energy Rough energy
landscape landscape landscape

Solution: kinetics of folding.



http://pps9900.cryst.bbk.ac.uk/projects/attila/golfFunnel.gif
http://pps9900.cryst.bbk.ac.uk/projects/attila/smoothfold.gif
http://pps9900.cryst.bbk.ac.uk/projects/attila/bumpyBowl.gif

Electron diffraction methods for protein structure

Single particle cryo-EM nanocrystallography

N

Problem: determining Problem: phasing diffraction pattern
orientations & classes



Orienting & reconstructing in single particle cryo-EM

Up to a million or more individual images of the protein complexes
may be required



Phasing in electron nano-crystallography

Granulovirus

Molecular replacement for phasing diffraction data:

- Borrow phase information from related
structure (initial model)

- Calculate difference maps (e.g. 2Fo-Fc)

- lteratively improve model by rebuilding and
refinement.

Step 1: orient the initial model in the unit cell

500 nm

Provided by
Peter Metcalf

20 Deg from single

crystal; ~2.4 A

Knowledge of the fold solves the phase
problem in protein crystallography



Recent international development (1): AlphaFold
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AlphaFold predicts protein structures
that are as accurate as experimentally
determined structures

Jumper et al. (2021) Nature 596, 583-9



Adaptation ESR 14

Goal 1 ESR 14: Experimental phasing
of protein crystals by nanobeam
diffraction (data collection protocols
and algorithms)

simED

Shift focus from protein crystals to
molecular complexgs: sm.gle molecule ¢ .0a5:
nano-beam diffraction (simED) +  Optimal data collection (scanning &

automation)

* Identifying molecule locations &
orientations (deep learning / correlation)

* Phasing continuous diffraction patterns
by molecular replacement

* Compare SNR to single particle cryo-EM




ED instead of EM because it improves the SNR
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Recent international development (2): reducing
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Niels de Jonge investigated
radiation damage to microtubule
protein complexes in graphene
liquid cells

Keskin & de Jonge (2018) Nano
Lett. 18, 7435-40
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Adaptation ESR 15

Goal ESR 15:
e Optimise data acquisition parameters for rotation & nanobeam diffraction

Concrete step: assess ‘graphene ravioli’ for reducing radiation damage:
* Learn sample prep from the lab of Niels de Jonge

* Measure functional & structural damage using various sample preparation
technologies, using Green Fluorescent Protein (GFP):
* Functional damage: reduction of GFP fluorescence as a function of electron dose
e Structure damage: reduction of Bragg diffraction of GFP crystals



Some conclusions

* Protein folding problem seems solved
* Nano-diffraction methods likely offer advantages in SNR over cryo-EM

* Next challenge: identify and orient proteins in complex samples
(living cells?)

* Small shift in research focus required for parts of WP2

* We have a strong team and good infrastructure for the new
challenges!



Thank youl!



