

H2020-MSCA ITN Grant n. 956099

Serial 3DED

Xiaodong Zou, Department of Materials and Environmenal Chemistry,

Stockholm University

NanED | Joint Initial Meeting

Pontedera, 29st- 30st November 2021

Nobel Prize lectures in Physics and Chemistry are held here every year, on December 8

Electron Crystallography Research in My Lab

Electron Microscopy Centre (EMC) at MMK, SU

JEOL 2100LaB6 & 2100F

TEMs

SEMs

JEOL Cross-section polisher

Fischione TEM Mill 1050

Two TEMs at SciLifeLab

Titan Krios G3i with a Ceta-D camera and a Gatan K3 BioQuantum detector with EPU-D

Stockholm

University

Talos Arctica with Falcon III, Gatan K2 & Ceta

Knut och Alice

Wallenbergs

Itiftelse

Vitrobot

Preassis

Ultramicrotome for sectioning

JEOL JSM7000F & 7401F

Hitachi TM3000

A large collection of holders: Heating, cooling, cryo-transfer, high tilt, double tilt

1982- : Electron crystallography on 3D inorganic crystals

Contraction of the second seco

Sven Hovmöller

Resolution

Hovmöller et al. Nature, 1984

Combining HRTEM image and ED pattern

2.0 Å → 0.75 Å (*R*1 = 0.147)

Weirich et al. Nature 1996

From ED pattern

Weirich et al. Acta Cryst. A, 2000

Atomic structures from HRTEM images along several projections

3D electron diffraction from zone axes

Many groups developed 3D electron diffraction ED data

Wei Wan

Precession Diffraction Tomography (ADT/PEDT)

FEI Tecnai STEM Stepwise goniometer tilt e⁻ beam precession

Ute Kolb

Tatiana Gorelik

Ultramicroscopy 2007 Ultramicroscopy 2008 Ultramicroscopy 2009 **Rotation Electron Diffraction (RED)**

JEOL JEM2100 TEM Stepwise goniometer tilt e⁻ beam tilt

FEI Tecnai TEM Stepwise & continuous goniometer tilt

Tamir Gonen eLife, 2013, Nat Methods, 2014

Dan Shi

Brent Nannenga

Jan Pieter Abrahams

Chikashi Toyoshima

Koji Yonekura

Acta Cryst. D, 2013

PNAS, 2015

Sven Daliang Hovmöller Zhang

Patent, WO/2008/060237 A1, 2008 Z. Kristallogr. 2010 J. App. Crystallogr. 2013

Data processing and structural analysis

Data processing: REDp, XDS, Dials

Unit cell determination Space group determination Indexing the diffraction spots Extract ED intensities

Wan et al. *J. App. Crystallogr.* 46 (2013) 1863 Su et al. *Micro- Mesoporous Mater.* 189 (2014) 115

Space group determination

Space group can be determined from the systematic absences

Phase identification

Structure solution: SHELXS/T, SIR Structure refinement: SHELXL, JANA

Zeolite: from structure to new discovery

First single crystal COF structure determined from RED data

RED data with 1.5 Å resolution

I-42*d, a* = 30.17 Å*, c* = 7.28 Å

Zhang, Su, Zou, Yaghi et al. J. Am. Chem. Soc. 2013, 135, 16336

9-fold interwoven diamond net

The structure was solved using simulated annealing parallel tempering algorithm using FOX. All non-H atoms were refined using SHELXL (R1 = 0.31).

Fast data collection and crystal tracking during continuous crystal rotation

Fast detector in 'movie' mode

Nederlof et al. *Acta Cystography D*, **2013** Nannenga et al. *Nature Methods*, **2014** Gemmi et al. *J. Applied Crystallogr.*, **2015** cRED data acquisition by software *Instamatic*: - crystal tracking by defocusing every 10th diffraction pattern

- Rotation range: : -44.0 to 47.4° (91.4°)
- Rotation speed: 0.76°/s
- Exposure time 0.5 s/frame

Cichocka et al. J. Appl. Cryst., 2018, 51, 1652-1661

Magdalena Cichocka

Bin Wang

12

Robustness of structure determination by cRED

CAU-36 (Co): [CO₂(Ni-H₄TPPP)]·2DABCO·6H₂O

8 datasets collected at 96 K, tilt range: ~ 100° Crystal size: ~ 500 nm, time/dataset: ~ 3 min

8 structural models superimposed

Average deviations: Framework (18) 0.03(2) Å, DABCO (8) 0.09(6) Å, water (2) 0.12(11) Å

Wang, Rhauderwiek, Inge, Stock, Zou et al. Chem. Eur. J. 2018, 66, 17429

Bin Wang

Can accurate atomic positions of guest moelcules be determined from cRED data?

Meng Ge

Open-framework germanate SU-8 determined by SC-XRD

Atomic positions of OSDAs in the difference map

Christensen, Zou et al. J. Am. Chem. Soc. 2006, 128, 14238. Meng, Huang, Zou et al. unpublished

Probing molecular motions and disorders

Molecular motions/disorders can be identified by anisotropic atomic displacement parameters (ADPs)

Laura Samperisi

Samperisi, Jaworski, Kaur, Lillerud, Zou, Huang, J. Am. Chem. Soc. 2021, 143, 43, 17947

> 200 structures determined using cRED data

Discover new polymorphs of pharmaceuticals

17

PCN-415: a photoactive MOF built from mixed metal $Ti_8Zr_2O_{12}(COO)_{16}$ cluster

Fast data collection Low electron dose

Resolution 0.82 Å Total data collection time: **17 s**

Yuan et al. ACS Cent. Sci. 2018, 4, 105

All **Zr**, **Ti**, **O** and **C** atoms were found by **SHELXS**. Kinematic refinement was applied using **SHELXL**.

Zhehao Huang

PCN-415				
Data Processing				
Software	XDS			
Wavelength (Å)	0.0251			
Space group	/ 4/mmm			
a, b, c (Å)	14.7, 14.7, 27.4			
α, β, γ (°)	90, 90, 90			
Resolution (Å)	0.82			
R _{sym}	0.26			
I / Sigma I	4.52			
Completeness (%)	94.5			
Redundancy	6.2			
Structure Solution and Refinement				
Software	Shelx			
Scattering factors	Electrons			
R(Int)	0.2256			
R1	0.2022			

Automated data collection, data processing and structure solution pipeline

- Crystal screening
- Selection of suitable crystals using machine learning
- Data collection assisted by auto-crystal tracking
- Data processing pipeline integrated with existing software for X-ray diffraction
- Online structure solution using SHELXT
- SerialED & SerialRED

Smeets et al., *J. Appl. Cryst.* **2018**, 51, 1262 Cichocka et al., *J. Appl. Cryst.* **2018**, *51*, 1652 Wang et al. *IUCrJ*, **2019**, *6*, 854

Towards high-throughput structure determination and phase analysis

SerialRED: automated cRED data collection

exposure (s) 0.05 Brightness 1.0 DisplayRange 11800	Input/Output Directory: C:\instamatic\work_2018-09-28	Browse		
	Sample name: experiment	20		
	Flatfield: C:\instamatic\flatfield.tiff	Browse		
	Open work directory Open settings directory Delet	e last experiment		
cRED autocRED serialED RED ctrl learning expert about				
	Automated Continuous rotation electron diffraction			
	Exposure time: 0.5 🛛 Beam unblanker	Bin Wang		
	Image interval: 10 🗢 📝 Enable image interval			
	Diff defocus: 1500 🗢 🗖 Toggle defocus			
	Exposure (image): 0.01 🚖 🔍 Enable Auto Tracking			
	Scan Area (um): 100 I Enable Full AutocRED Fe	ture		
	Enable Full AutocRED + o	rystal finder Feature		
	Enable auto z height adju	stment		
	Now you can start to rotate the goniorneter at any time.	 automated crystal finding 		
	Click STOP COLLECTION BEFORE removing your foot from the pedal!	crystal tracking		
	Start Collection Stop Collection	data conversion		
	Show calib_is Show calib_beamshift	data processing		
	Stop Rotation			
Save image	Wang, Zou, Smeets, <i>IUCrJ</i> , 2019 , 6, 8	S54.		

SerialRED: high-throughput phase analysis of polycrystalline samples

multiple T elements (Si, Al, B, and Ge)

20

25

2 theta/degree

30

35

Y. Luo, B. Wang, S. Smeets, J. Sun, W. Yang, X. Zou, ChemRxiv, preprint, 2021, DOI:10.33774/chemrxiv-2021-34v44

5

10

15

cRED datasets from

in 6 hours

Five different zeolites found:

Major phases: RTH, IWV, *CTH

Minor phases: POS, *UOE

340 crystals collected

SerialRED: high-throughput phase analysis of polycrystalline samples

- Mixture
- Needle- and plate-like crystals

Bi-phase mixture?

SerialRED: high-throughput phase analysis of polycrystalline samples

- RTH, IWV and *CTH are the major phases
- The contents of POS and *UOE are too low to be dectected by PXRD
- POS, *UOE, and RTH share the same morphology
- IWV and *CTH have similar unit cells

Complex synthesis system of polycrystalline materials (zeolites)

OSDA/Si= 0.6 , HF/Si= 0.6 , H ₂ O/Si= 10						
			Si/Ge			
		15	10	5		
$(Si+Ge)/T^{III} = \infty$		TON	TON+POS	POS		
(Si+Ge)/Al	100	NON	Amor. +Den.+*UOE	Amor.+Den.+*UOE		
	20	Amor.	Amor. +RTH+IWV+*CTH	RTH+*UOE+POS+IWV+*CTH		
	15	Amor.+Den.+*UOE+IWV	Den.+RTH+*UOE+POS+IWV+*CTH	RTH+*UOE+POS+IWV+*CTH		
	10	RTH	RTH+*UOE+POS+IWV+*CTH	RTH+IWV+*CTH		
	5	Amor.	Amor.	RTH		
	100	NON	Amor.	Amor.+POS		
(Si+Ge)/B	20	Amor.+SFE	SFE	SFE+TON		
	15	Amor.+SFE	SFE	SFE+TON		
	10	SFE	SFE	SFE		
	5	SFE	SFE	SFE		

Diverse building units

Y. Luo, B. Wang, S. Smeets, J. Sun, W. Yang, X. Zou, ChemRxiv, preprint, 2021, DOI:10.33774/chemrxiv-2021-34v44

SerialED: automated high-throughput ED data collection

Stef Smeets

Source code: www.github.com/stefsmeets/instamatic

27

Structure determination using SerialED data

Orientation determination & reflection indexation

- Forward projection model using known lattice parameters
- Generate pattern library of all possible orientations (~1.5 Million in P1)

al: 0.96, be: 0.78, ga: 0.81

score = 7363.9, scale = 251.6

proj = 700, phase = LTA

Match best orientation and index data

Zeolite A

0

100 ·

200

100

200

300

400

500

28

200

al: 0.98, be: 0.80, ga: 2.90

score = 11996.2, scale = 251.1

proj = 732, phase = LTA

100

200

0

100

Automatic crystal selection using machine learning

- A deep convoluted neural network (CNN) was used to distinguish between *good* and *bad* diffraction patterns.
- ~78.000 diffraction patterns were used to train the CNN.
- Each diffraction pattern is passed through the CNN, a prediction score between 0.0 and 1.0 is given (any value >0.5 corresponds to a *good* quality diffraction pattern).

Jonas Ångström

A multi-phasic powder sample in the Ni-Se-CI-O system

ESR 11 – Overview

- Development of high-throughput serial (rotation) electron diffraction and its application for phase and structural analysis of pharmaceutics and metal-organic frameworks (MOFs)
 - To establish automation strategies and develop software for high-throughput serial (rotation) electron diffraction (SerialED/RED) data collection
 - To establish high-throughput protocols for data processing
 - To apply machine learning and clustering algorithms for phase analysis and structure determination of pharmaceutical compounds
 - To develop MOFs as new "crystalline sponges" for structural analysis of natural products and molecules with tiny (nano-/pico gram) quantity

Supervisor: Xiaodong Zou

Planned Secondments:

- E. Mugnaioli, IIT
- U. Kolb, **JGU**
- D. Waterman, STFC
- S. Norberg, AstraZeneca

Blank map made by Vemaps.com

Acknowledgements

Former members: Magdalena Cichocka, Peng Guo, Stef Smeets, Junliang Sun, Jie Su, Wei Wan, Bin Wang, Daliang Zhang, Max Clabber, Jingjng Zhao

Collaborators: Norbert Stock (Univ. of Kiel), Hong-cai Zhou (Texas A&M Univ.), Lynne McCusker & Christian Baerlocher (ETH Zurich), Avelino Corma (ITQ), Suk-Bong Hong (POSTECH), Simon Parson (Univ. Edinburgh), Min Liu (Sun Yat-sen Univ.), Weimin Yang (SRIPT, SINOPEC), Karl-Petter Lillerud (Univ. Oslo)

Free software available at

https://www.mmk.su.se/zou/electron-crystallography-software

Department of Materials Stockholm and Environmental Chemistry University Start Education Research Collaboration About Us Staff My Department SEARCH Print Department of Materials and Environmental Chemistry > zou > Electron Crystallography Software Electron Crystallography Software Start Members One of the key research interests of Zou's Group has been developing and applying quantitative electron crystallography methods for the structure determination of Research unknown electron beam sensitive materials such as zeolite, zeolite-like materials, small Publications organic compounds and proteins. Over the years, a number of electron crystallography software has been developed in Zou's Group. **Research News** RED Electron Crystallography Two interacctive programs for 1) collecting and 2) processing Rotation Electron Software Diffraction data CrystDiff **Rotation Electron** Diffraction (RED) An interactive program for simulating electron diffraction pattern CrystDiff **OFocus** An interactive program for structure projection reconstruction from through-focus QFocus **HRTEM** images Instamatic Instamatic **Open Positions** A python program that is being developed with the aim to automate the collection of electron diffraction data.

Postdoc positions available

Please contact me

xzou@mmk.su.se

