

Prof. Dr. Martin U. Schmidt Goethe-Universität Frankfurt Inst. f. Anorgan. und Analyt. Chemie m.schmidt@chemie.uni-frankfurt.de

Mainz, 7-12-2022

Content

1. Iso-butyl-lithium

Ordered phase and rotator phase

2. NaOEt

Disordered structure with unclear space group

3. Monomethyl-quinacridone Head-to-tail disorder

ⁱBuLi iso-Butyl-lithium

Crystal structure determined by X-ray powder diffraction

Alexander Bodach, Lothar Fink, Martin U. Schmidt*:

Crystal structures of ordered and plastic-crystalline phases of iso-butyllithium by X-ray powder diffraction,

Chem. Commun., **2018**, 54, 10734-10737.

Preparation and measurement

ⁱBuLi: highly sensitive to air and moisture All procedures under N_2 or Ar

ⁱBuLi obtained as solution in hexane

2x recrystallised

Evaporated

Filled in capillary and sealed

Measured in sealed capillary

STOE Stadi-P diffractometer, Cu-K α_1 radiation

Temperature control by Oxford Cryostream

Structure determination of the low-temperature phase (α)

Indexing: triclinic

```
Space group P 1 or P \overline{1}?
```

```
From unit cell volume: Z = 12
=> 3 tetramers or 2 hexamers?
```

Structure solution by direct-space methods with DASH

- with tetramers in P 1 and P $\overline{1}$
- with hexamers in P 1 and P $\overline{1}$

Final solution:

Space group P $\overline{1}$ with two symmetrically independent hexamers, both on inversion centres

Low-temperature phase (α -phase)

Low-temperature phase (α -phase)

SCHAKAL

 $P\overline{1}, Z=2$

Two symmetricylly independent hexamers, both on inversion centres

Room-temperature phase (γ-phase)

Indexing: orthorhombic, Z' = 2

Space group unclear

Rotator phase (Plastic phase)!

Structure filnally solved in Pnnn Molecules 4-fold disordered

Room-temperature phase (\gamma-phase) 0 a **Rotator phase (Plastic phase)** Hexamers rotate in the solid state (Dynamic disorder)

NaOEt

First Synthesis: Liebig (1837)

180 years later:

Crystal structure determined by X-ray powder diffraction (2019)

Vacuum \rightarrow Solid

Vacuum \rightarrow Solid

Ar \rightarrow liquid

Vacuum \rightarrow Solid

Ar \rightarrow liquid

Vacuum \rightarrow Solid

Vacuum \rightarrow Solid

Ar \rightarrow liquid

Vacuum \rightarrow Solid

Vacuum \rightarrow Solid

Ar \rightarrow liquid

Vacuum \rightarrow Solid

Ar \rightarrow Liquid

 $\text{Vacuum} \rightarrow \text{ Solid}$

Ar \rightarrow Solid

Vacuum \rightarrow Solid

Ar \rightarrow liquid

Vacuum \rightarrow Solid

Ar \rightarrow Liquid

Vacuum \rightarrow Solid

Ar \rightarrow Solid

Mixture of 3-4 phases. Mainly NaOEt * 2 EtOH

Vacuum \rightarrow Solid

Ar \rightarrow liquid

Vacuum \rightarrow Solid

Ar \rightarrow Liquid

Vacuum \rightarrow Solid

Ar \rightarrow Solid

Mixture of 3-4 phases. Mainly NaOEt * 2 EtOH

Vacuum, 50°C, several hours \rightarrow NaOEt (pure)

NaOEt: Rietveld refinement

Na	0	Et
0	Pb	LP

NaOEt has Anti-PbO structure.

NaOEt: Space group and disorder

P 4/*nmm*, *Z* = 2 4-fold disorder $P\overline{4} 2_1 m, Z = 2$ 2-fold disorder

Published as:

1) Maurice Beske, Lukas Tapmeyer, Martin U. Schmidt: "Crystal structure of sodium ethoxide (C_2H_5ONa), unravelled after a 180 years" *Chem. Commun.*, **2020**, 56, 3520-3523

2) Maurice Beske, Stephanie Cronje, Martin U. Schmidt*, Lukas Tapmeyer: "Disordered sodium alkoxides from powder data: crystal structures of sodium ethoxide, propoxide, butoxide and pentoxide, and some of their solvates" *Acta Cryst.*, **2021**, B77, 1-15. Orientional disorder in monomethyl-quinacridone investigated by Rietveld refinement, pair-distribution function analysis and lattice-energy minimisations

Monomethyl-quinacridone

Relative Intensity (%)

Structure determination from powder data

- Indexing

- Structure solution by real-space methods with DASH
- "Rietveld" refinement with TOPAS Restrains on bond lengths, bond angles and planarity

Comment on the name "Rietveld method":

- Idea of Loopstra, 1963
- Programmed by Rietveld, 1966
- ⇒ Correct name: "Loopstra method"

[Loopstra & Rietveld, Acta Cryst B25, 787 (1969); van Laar & Schenk, Acta Cryst A74, 88 (2018)]

$$R_{wp}$$
= 3.888
GoF = 1.065
a = 3.82627 (2), b = 6.87845 (4), c = 16.800 (19) Å,
 α = 80.77 (10), β = 64.38 (8), γ = 68.14 (5)°,
V = 371.44 Å³
P 1, Z = 1, Z' = 0.5

Refinement of occupancies

Head-to-tail disorder

Local ordering?

- No superstructure reflections visible
- No diffuse scattering visible (Powder data!)

- Rietveld refinements
- Refinement to the Pair-Distribution Function (PDF)
- Lattice-energy minimisations

Rietveld refinements

Structural model	Average structure	В	С	D	E	F	G	н	I
Space group	P1	<i>P</i> 1	PĪ	$P\overline{1}$	PĪ	$P\overline{1}$	PĪ	PĪ	PĪ
Z	1	1	2	2	2	2	2	2	2
R _{wp} / %	3.888	3.713	3.870	3.783	3.706	3.799	3.692	3.843	3.757
χ^2	1.065	1.020	1.063	1.039	1.018	1.044	1.014	1.056	1.032

The Pair-Distribution Function (PDF)

PDF: Probability to find two atoms separated by a distance *r*

- weighted with the scattering power
- summed over all atoms
- normalised to a homogeneous atom density
- Fourier transform of the Intensities of a powder pattern (total scattering)

$$G(r) = 4\pi r [\rho(r) - \rho_0] = \frac{2}{\pi} \int_{\min}^{\max} Q[S(Q) - 1] \sin(Qr) \, dQ$$

The Pair-Distribution Function (PDF)

Experimental PDF

Input: Structural models B - I

Refinement of:

- Lattice parameters
- Atomic coordinates (Molecules rigid)
- Scale factor
- Peak widths (described by B_{intra} and B_{inter}) [N. Rademacher et al., *J. Appl. Cryst.* 45, 482-488 (2012).
 D. Prill et al., *J. Appl. Cryst.* 48, 171-178 (2015).
 D. Prill et al., *Acta Cryst.* A72, 62-72 (2016).]
- Dampening of PDF at higher r

Programs:

- PDFgetX3 (calculation of the PDF curve)
- **TOPAS-6** (for structure fit to the PDF) [Acknowledgement to Alan Coelho!] Calculation time: 20-30 min per structure

Model E (best fit to the PDF)

Model E (best fit to the PDF)

Model E (best fit to the PDF)

Refinement of organic structures to PDF data:

- feasible
- reliable
- sensitive to small structural deviations

Structural model	В	С	D	E	F	G	н	I
R_{wp}^{PDF}	0.364	0.345	0.377	0.341	0.450	0.450	0.354	0.469

Different local structures possible

Lattice energy minimisations

Input:

- Models B - I

Method:

- Dreiding force field
- Charges: HF/6-31G** + ESP

Refinement of:

- Lattice parameters
- All atomic coordinates (flexible molecules)

Program for lattice-energy minimisations:

- Materials Studio

Lattice energy minimisations

Structural model	В	С	D	E	F	G	н	I.
E _{rel} / kJ/mol	1.84	0.5	6.48	0.63	0.04	1.76	4.89	0
V _{mol}	369.2	369.7	384.1	369.1	366.7	370.7	377.2	366.4

Different local structures possible

Unfavorable local structure (Models D + H):

Superposition of molecules:

Superposition of molecules:

Superposition of molecules:

(Idea + Photo: Peter Müller)

Superposition of molecules:

(Idea + Photo: Peter Müller)

Superposition of molecules:

Good H-bonds Sterically demanding

Worse H-bonds Better space filling

ÇH₃

(Idea + Photo: Peter Müller)

or

Superposition of molecules:

Good H-bonds Sterically demanding

ÇH₃

(Idea + Photo: Peter Müller)

Never observed

Typical local structure: Model E

- Good Rietveld fit
- Best PDF fit
- Good lattice energy

Unfavorable local structure:

Local ordering of neighbouring molecules in this direction

No superstructure reflections

Good H-bonds

Good space filling due to local ordering

Conclusion

- 1. Statistical head-to-tail disorder with local ordering of molecules in 1 direction
- 2. Refinement of organic crystal structures to PDF data: - feasible
 - reliable
 - sensitive to small structural deviations

Acknowledgements:

- Carina Schlesinger
- Dragica Prill

H₂C