

University of Bremen Fachbereich 05 Geowissenschaften

Three-dimensional pair distribution functions: 3D-ΔPDF

An Introduction

<u>Ella Mara Schmidt</u>, Crystallography & Geomaterials Research, Faculty of Geosciences, University of Bremen, Germany.

Mainz, December 8, 2022

"A material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering." [1]

[1] IUCr. Report of the Executive Committee for 1991. Acta Cryst. A48, 922-946 (1992).

"A material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering." [1]

[1] IUCr. Report of the Executive Committee for 1991. Acta Cryst. A48, 922-946 (1992).

"A material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering." [1]

"A material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering." [1]

[1] IUCr. Report of the Executive Committee for 1991. Acta Cryst. A48, 922-946 (1992).

E. M. Schmidt

Crystalline Materials

[1] IUCr. Report of the Executive Committee for 1991. Acta Cryst. A48, 922-946 (1992).

Correlated Disorder in Functional Materials

(a) Prussian blue analogues [2](b) Rocksalt cathode materials [3]

[2] Simonov, A. et al. Nature. 578, 256-260 (2020).
[3] Ji, H., et al. Nat. Commun. 10, 592 (2019).

(c) Relaxor ferroelectrics [4](d) Metal-organic frameworks [5]

[4] Senn, M. S. et al. Phys. Rev. Lett. 116, 207602 (2016).
 [5] Ehrling, S., et al. Nat. Chem. 13, 568–574 (2021).

Correlated Disorder in Functional Materials

(a) Prussian blue analogues [2](b) Rocksalt cathode materials [3]

[2] Simonov, A. et al. Nature. 578, 256-260 (2020).
[3] Ji, H., et al. Nat. Commun. 10, 592 (2019).

(c) Relaxor ferroelectrics [4](d) Metal-organic frameworks [5]

[4] Senn, M. S. et al. Phys. Rev. Lett. 116, 207602 (2016).
 [5] Ehrling, S., et al. Nat. Chem. 13, 568–574 (2021).

Understanding diffuse scattering

University

Bremer

Understanding diffuse scattering

- \rightarrow Bragg data analysis still yields an average unit cell
- \rightarrow Information about local order is only encoded in the diffuse scattering

E. M. Schmidt

Substitutional disorder

Warren-Cowley short-range order parameter

$$\begin{aligned} \alpha_{\vec{v}} &= 1 - \frac{p_{\vec{v}}^{AB}}{m_A m_B} \\ \begin{cases} > 0 & \text{Positive correlation} \\ = 0 & \text{No correlation} \\ < 0 & \text{Negative correlation} \end{cases} \end{aligned}$$

E. M. Schmidt

Displacement disorder

6/22

Mainz, December 8, 2022

Atomic size effect

Diffuse Scattering Analysis

Aim: Determine correlations between disordered components quantitatively and understand local atomic arrangements

Available tools:

- [6] Welberrry, T.R. & Weber, T. (2016). Crystallogr. Rev. 22, 2-78.
- [7] Schmidt, E.M & Neder, R.B. (2017). Acta Cryst., A73, 231-237.
- [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.
- [9] Proffen, T. & Welberry, T. R. (1997) Acta Cryst. A53, 202-216.
- [10] Schmidt, E. M. et al. (2022) IUCrJ., 9, 21-30.
- [11] Simonov, A., et al. (2014) J. Appl. Cryst., 47, 1146-1152.

3D-APDE

E. M. Schmidt

Diffuse Scattering Analysis

Aim: Determine correlations between disordered components quantitatively and understand local atomic arrangements

Available tools:

niversity Bremen

 $I_{Diffuse}(\vec{h}) \propto 2 \sum_{\vec{v} \neq \vec{0}} \Bigg[$ Analytical modelling [6,7] $\left[p_{\vec{\tau}}^{AA} |F_A|^2 \cos(2\pi \vec{h} \vec{\delta}_{\vec{\tau}}^{AA}) + p_{\vec{\tau}}^{BB} |F_B|^2 \cos(2\pi \vec{h} \vec{\delta}_{\vec{\tau}}^{BB})\right]$

$$+p_{\vec{v}}^{AB}(F_AF_B^{\star}+F_BF_A^{\star})\cos(2\pi\vec{h}\vec{\delta}_{\vec{v}}^{AB})]\cdot\exp(-2\pi^2\vec{h}\underline{\sigma}_{\vec{v}}\vec{h})$$
$$-|m_AF_A+m_BF_B|^2\cos(2\pi\vec{h}\vec{v})\cdot\exp(-4\pi^2\vec{h}\underline{\sigma}_{\vec{E}}\vec{h})]$$
$$+m_A|F_A|^2+m_B|F_B|^2-|m_AF_A+m_BF_B|^2\cdot\exp(-4\pi^2(\vec{h}\underline{\sigma}_{\vec{h}}\vec{h}))$$

- [6] Welberrry, T.R. & Weber, T. (2016). Crystallogr. Rev. 22, 2-78.
- Schmidt, E.M & Neder, R.B. (2017). Acta Cryst., A73, 231-237.
- [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.
- [9] Proffen, T. & Welberry, T. R. (1997) Acta Cryst. A53, 202-216. [10] Schmidt, E. M. et al. (2022) IUCrJ., 9, 21-30.
- [11] Simonov, A., et al. (2014) J. Appl. Cryst., 47, 1146-1152.

Diffuse Scattering Analysis

Aim: Determine correlations between disordered components quantitatively and understand local atomic arrangements

Available tools:

- Analytical modelling [6,7]
- Direct Monte Carlo modelling [8]

- [6] Welberrry, T.R. & Weber, T. (2016). Crystallogr. Rev. 22, 2-78.
- [7] Schmidt, E.M & Neder, R.B. (2017). Acta Cryst., A73, 231-237.
- [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.
- [9] Proffen, T. & Welberry, T. R. (1997) Acta Cryst. A53, 202-216.
 [10] Schmidt, E. M. et al. (2022) IUCrJ., 9, 21-30.
 [11] Simonov, A., et al. (2014) J. Appl. Cryst., 47, 1146-1152.

Diffuse Scattering Analysis

Aim: Determine correlations between disordered components quantitatively and understand local atomic arrangements

Available tools:

- Analytical modelling [6,7]
- Direct Monte Carlo modelling [8]
- Reverse Monte Carlo modelling [9]

- [6] Welberrry, T.R. & Weber, T. (2016). Crystallogr. Rev. 22, 2-78.
- 7] Schmidt, E.M & Neder, R.B. (2017). Acta Cryst., A73, 231-237.
- [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.
- [9] Proffen, T. & Welberry, T. R. (1997) Acta Cryst. A53, 202-216.
- [10] Schmidt, E. M. et al. (2022) IUCrJ., 9, 21-30.
- [11] Simonov, A., et al. (2014) J. Appl. Cryst., 47, 1146-1152.

Diffuse Scattering Analysis

Aim: Determine correlations between disordered components quantitatively and understand local atomic arrangements

$$I(\boldsymbol{q}) \propto \operatorname{Tr}\left\{\underline{\underline{MF}}\left[\underline{1} + \beta \underline{\underline{MJ}}(\boldsymbol{q})\right]^{-1}\right\}$$

Available tools:

- Analytical modelling [6,7]
- Direct Monte Carlo modelling [8]
- Reverse Monte Carlo modelling [9]
- Mean field approximations [10]

- [6] Welberrry, T.R. & Weber, T. (2016). Crystallogr. Rev. 22, 2-78.
- 7] Schmidt, E.M & Neder, R.B. (2017). Acta Cryst., A73, 231-237.
- [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.
- [9] Proffen, T. & Welberry, T. R. (1997) Acta Cryst. A53, 202-216.
- [10] Schmidt, E. M. et al. (2022) IUCrJ., 9, 21-30.
- [11] Simonov, A., et al. (2014) J. Appl. Cryst., 47, 1146-1152.

Diffuse Scattering Analysis

Aim: Determine correlations between disordered components quantitatively and understand local atomic arrangements

Available tools:

Iniversity of Bremen

- Analytical modelling [6,7]
- Direct Monte Carlo modelling [8]
- Reverse Monte Carlo modelling [9]
- Mean field approximations [10]
- 3D-pair distribution functions [11]

- [6] Welberrry, T.R. & Weber, T. (2016). Crystallogr. Rev. 22, 2-78.
- [7] Schmidt, E.M & Neder, R.B. (2017). Acta Cryst., A73, 231-237.
- [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.

[9] Proffen, T. & Welberry, T. R. (1997) Acta Cryst. A53, 202-216.
[10] Schmidt, E. M. et al. (2022) IUCrJ., 9, 21-30.
[11] Simonov, A., et al. (2014) J. Appl. Cryst., 47, 1146-1152.

3D-∆PDF

E. M. Schmidt

$3D-\Delta PDF$ Method

Mathematical definition

PDF:

University of Bremen

$$\mathscr{F}^{-1}\left[I_{\mathcal{T}ot}\left(\vec{h}
ight)
ight] = \langle \rho\left(\vec{x}
ight)*
ho\left(\vec{x}
ight)
angle$$

All interatomic distances

Patterson-Function:

$$\mathscr{F}^{-1}\left[\mathit{I}_{\mathsf{Bragg}}\left(ec{h}
ight)
ight] = \langle
ho\left(ec{x}
ight)
angle * \langle
ho\left(ec{x}
ight)
angle$$

Interatomic distances of average structure

3D-∆PDF

E. M. Schmidt

$3D-\Delta PDF$ Method

Mathematical definition

PDF:

University

of Bremen

$$\mathscr{F}^{-1}\left[I_{Tot}\left(\vec{h}
ight)
ight] = \langle \rho\left(\vec{x}
ight)*
ho\left(\vec{x}
ight)
angle$$

All interatomic distances

. . .

Patterson-Function:

$$\mathscr{F}^{-1} \left[I_{Bragg} \left(\vec{h} \right) \right] = \langle \rho \left(\vec{x} \right) \rangle * \langle \rho \left(\vec{x} \right) \rangle$$
Interatomic distances of average structure
3D- Δ PDF:

$$\mathscr{F}^{-1} \left[I_{Diff} \left(\vec{h} \right) \right] = \mathscr{F}^{-1} \left[I_{Tot} \left(\vec{h} \right) - I_{Bragg} \left(\vec{h} \right)$$
Difference real vs. average structure [3]

-

$3D-\Delta PDF$ Signatures

PDF peak width: spread of interatomic distance of neighbouring atoms

University of Bremen

Patterson peak width: given by overall atomic displacement parameter Average structure

Real structure

$3D-\Delta PDF$ Signatures

PDF peak width: spread of interatomic distance of neighbouring atoms

University of Bremen

Patterson peak width: given by overall atomic displacement parameter

Average structure

Real structure

$3D-\Delta PDF$ Signatures

PDF peak width: spread of interatomic distance of neighbouring atoms

University of Bremen

Patterson peak width: given by overall atomic displacement parameter

$3D-\Delta PDF$ Signatures

PDF peak width: spread of interatomic distance of neighbouring atoms

University of Bremen

Patterson peak width: given by overall atomic displacement parameter

3D-APDF

E. M. Schmidt

University

Bremen

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-APDF

E. M. Schmidt

PDF

0.8 0.9 1 1.1 1.2

21

Bremen

University

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_{A} : concentration of A m_{B} : concentration of B

$3D-\Delta PDF$ Signatures

Intensity

Average structure

Real structure

3D-∆PDF

E. M. Schmidt

PDF

0.8 0.9 1 1.1 1.2

n

University

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

$3D-\Delta PDF$ Signatures

Intensity

Average structure

Real structure

3D-∆PDF

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-∆PDF

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-∆PDF

E. M. Schmidt

University

Bremen

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-ΔPDF

E. M. Schmidt

University

Bremen

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-APDF

E. M. Schmidt

PDF

0.8.0.9 1 1.1.1.2

n

University

Bremen

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

$3D-\Delta PDF$ Signatures

Intensity

Average structure

Real structure

3D-∆PDF

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-∆PDF

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-APDF

E. M. Schmidt

University

Bremen

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-APDF

E. M. Schmidt

University

Bremen

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

University

Bremen

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

3D-APDF

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-∆PDF

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

3D-∆PDF

PDF peak height:

 $\sum_{AB} \frac{n_{AB}}{n_t} \cdot f_A \cdot f_B$

 n_{AB} : # of AB pairs n_t : total # of pairs f_A : Scattering factor A f_B : Scattering factor B

Patterson peak height:

 $(m_A f_A)(m_B f_B)$

 m_A : concentration of A m_B : concentration of B

Step 1: Measurement

University of Bremen

 λ = 0.02508 Å 0.25° steps Exposure: 1 s Microscope: FEI Tecnai G2

Step 1: Measurement

University of Bremen

> λ = 0.02508 Å 0.25° steps Exposure: 1 s Microscope: FEI Tecnai G2

Data processing and reconstruction

Step 1: Measurement: Aim for full reciprocal space coverage

Data processing and reconstruction

Step 1: Measurement: Aim for full reciprocal space coverage

Step 2: 3D-Data reconstruction

University of Bremen

Software options:

- X-ray data: Meerkat [13], works with orientation matrix from XDS
- Neutron data: Mantid [14]
- 3D-ED data: Pets2 [15], soon eADT
- Customized solutions

[13] https://github.com/aglie/meerkat
[14] https://www.mantidproject.org/
[15] http://pets.fzu.cz/

Step 3: Symmetry averaging

 \rightarrow Full reciprocal space coverage is needed for the Fourier transform!

Step 4: Bragg peak elimination

Normal punch and fill:

- Outlier rejection (KAREN-algorithm [16])
- Punch and fill with average value of surrounding voxels [11]

+10							,		
				•			,		
						,		,	
	•	-							-
k		•	÷						
	•			•		•	•	•	
	•			,	•	•	•	•	•
	•			•	·	•	•	•	•
-10		•	•	•	•	•	•	•	*
	- 1	10			h			+	10
					ii				

[16] Weng, J. et al. (2020) J. Appl. Cryst. 53, 159-169.
 [11] Simonov, A. et al. (2014) J. Appl. Cryst. 47, 2011-2018.

Step 4: Bragg peak elimination

Normal punch and fill:

- Outlier rejection (KAREN-algorithm [16])
- Punch and fill with average value of surrounding voxels [11]

Most of the times needed:

 Punch with larger radius and fill using an interpolation algorithm

Step 4: Bragg peak elimination

3D-APDF

Normal punch and fill:

- Outlier rejection (KAREN-algorithm [16])
- Punch and fill with average value of surrounding voxels [11] +10

Most of the times needed:

Punch with larger radius and fill using an interpolation algorithm

[16] Weng, J. et al. (2020) J. Appl. Cryst. 53, 159-169.
 [11] Simonov, A. et al. (2014) J. Appl. Cryst. 47, 2011-2018.

E. M. Schmidt

Step 4: Bragg peak elimination

Normal punch and fill:

- Outlier rejection (KAREN-algorithm [16])
- Punch and fill with average value of surrounding voxels [11] +1

Most of the times needed:

 Punch with larger radius and fill using an interpolation algorithm

[16] Weng, J. et al. (2020) J. Appl. Cryst. 53, 159-169.
 [11] Simonov, A. et al. (2014) J. Appl. Cryst. 47, 2011-2018.

$3D-\Delta PDF$ interpretation and modelling

$3D-\Delta PDF$ interpretation and modelling

[11] Simonov, A. et al. (2014) J. Appl. Cryst. 47, 1146-1152. https://github.com/YellProgram/Yell
 [8] Neder, R. B. & Proffen, T. (2008) Diffuse Scattering and Defect Structure Simulations. Oxford University Press.

Applications of $3D-\Delta PDF$

Iniversity of Bremer E. M. Schmidt

Summary

- 3D- Δ PDFs visualize difference pair correlations
- Positive correlations: More scattering density then suggested by the average structure
- Negative correlations: Less scattering density then suggested by the average structure
- Full reciprocal space coverage is needed from measurement
- Good signal to noise ratio and low background are essential
- Large q_{max} is helpful but not as essential as for 1D-PDF

