

H2020-MSCA ITN Grant n. 956099

WP4 Crystallography beyond nanocrystals Research theme ESR6

Tatiana Gorelik, Ute Kaiser (Ulm University)

NanED | Joint Initial Meeting

Pontedera, 29st- 30st November 2021

<u>Ute Kaiser</u> 2D materials, AC-HRTEM <u>Tatiana Gorelik</u> 3D electron diffraciton

UUIm group – People Materials Science Electron Microscopy (U. Kaiser)

018

2009-2
in

The Instrument CEOS Cc/Cs quadrupole/octupole corrector FEI Titan Themis³ column Gatan Quantum GIF 20, 30, 40, 60, and 80 kV

Imaging theory at low

HV kV	wavelength pm	measured resol. pm	resolution wavelengths	opment
SALVE				1
80	4.2	76	18	1
60	4.9	83	17	
40	6.0	90	15	als
30	7.0	115	16.5	
20	8.6	139	16	
FEI Titan				-
80	4.2	180	43	oment

2 Professors 1 Scientific staff position

3 Technical assistants

3 Master students

7 PhD students

9 PostDocs

https://www.uni-ulm.de/en/einrichtungen/emms/ and www.salve-project.de

Research Topics

SCIENCE AND OCTOBER OF THE SCIENCE

ulm university universität **UUIM**

Inorganic low-dimensional materials

H. Qi, H. Sahabudeen, B. Liang, M. Položij, M. A. Addicoat, T. E. Gorelik, M. Hambsch, M. Mundszinger, S. Park, B. V. Lotsch, S. C. B. Mannsfeld, Z. Zheng, R. Dong, T. Heine, X. Feng, U. Kaiser Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer Science Advances 6 (2020), eabb5976

3D materials

Low-voltage Imaging Theory

Transmission electron microscopy instrumentation

Theory of image formation Quantitative Fit

Research Methods

ulm university universität

Instrumentation TEMs

- **SEM/FIB** Nvision Ga ion beam (2 - 30 kV) Electron beam (0.5 - 30 kV)
- SALVE 20 80
 - Monochromator and low voltage energy filter for spectroscopy and energy filtered TEM. Dedicated low voltage corrector for geometric and chromatic aberrations
- FEI Titan 80-300 HRTEM, STEM, EELS, EnergyFiltered TEM, Tomography, Electron Holography, Lorentz microscopy
- Thermofisher TALOS 200x (TEM, HRTEM, STEM with SuperX EDX detector)

Instrumentation Sample Prep

ulm university universität

Lab for 3D Materials

- 3 Plasma cleaners
 TEM sample cleaning
 2 Ion Beam Thinning machine
 Fishione Ion Mill 1010
 Fishione Nanomill 1040
- Plunch Freezer
- Glove Boxes
- Light microscopes

2D Sample preparation laboratory

Preparation Laboratory 1: Spincoater and preparation for battery materials

Preparation Laboratory 3: Glovebox for preparation for oxygen sensitive materials (viscoelastic stamping method)

ulm university universität

Preparation Laboratory 2: Liquid exfoliation and CVD transfer

Preparation Laboratory 3: Light microscope for classical 2D preparation (wet etching method)

2D Sample preparation laboratory

m

ulm university universität

From 2D direct and spectroscopic space to 3D reciprocal space of 2D materials

ulm university universität

uulm

J. Köster, B. Liang, A. Storm, U. Kaiser

Polymer-assisted TEM specimen preparation method for oxidation-sensitive 2D materials Nanotechnology 32 (2021) 075704

T. Lehnert, M. Ghorbani-Asl, J. Köster, Z. Lee, A. V. Krasheninnikov, and U. Kaiser

Electron-Beam-Driven Structure Evolution of Single-Layer MoTe2 for Quantum Devices ACS Appl. Nano Mater. 2 (2019) 3262-3270

WP4 Crystallography beyond nanocrystals

• ESR6 Exploring 3D reciprocal space of 2D crystals

• **ESR7** Structure of poorly crystalline materials from their electron total scattering data (ePDF)

-> Stockholm

Layered materials: MoS₂ (TMDs)

Layered materials: MnPS₃ (TMPTs)

ulm university universität **UUIM**

MoS₂

Two graphene sheets 10° twist

Diverse 2D materials and their heterostructures:

- The same materials twisted
- Different materials (different lattice costants) stacked
- Different materials twisted, ...

What happens to a crystal structure when it is absolutely free in one direction

Reciprocal space - diffraction

Direct space - crystal

Reciprocal space - diffraction

Direct space - crystal

Direct space - crystal

Reciprocal space - diffraction

Reciprocal space - diffraction

Direct space - crystal

ulm university universität **UUUM**

ulm university universität

Real data

Transition metal di-chalcogenides – TMDs: MoS₂, MoTe₂

 MoS_2 monolayer, 3 atoms in z

Electron diffuse scattering – crystal size confinement – 3D ED on 2D crystal

0 0 0, 0

ulm university universität

Gorelik et al., Micron 146 (2021) 103071

For MoS₂ thin crystals we can count layers (atoms)

Gorelik et al., Micron 146 (2021) 103071

ESR6 Exploring 3D reciprocal space of 2D crystals

Sameh Okasha <samehokasha@gmail.com>

ESR6 Exploring 3D reciprocal space of 2D crystals – PROJECT OUTLOOK

Sameh is going to

- Learn how to collect and analyse 3D ED data
- Learn how to prepare 2D crystals
- Quantify crystal waviness
- Prepare heterostructures (twisted)...

Superstructure <u>Not nessesarily comensurate</u>

ulm university universität **UUUM**

				•												
													•			

0 degrees

Sameh is going to

- Understand and analyse
 3D ED data of twisted
 heterostructures
- Study the 3D appearance of superstructure reflections
- Relate *everything* to structural parameters

