

H2020-MSCA ITN Grant n. 956099

ESR 10 – Structure-based Drug Discovery by 3D ED

Lei Wang and Hongyi Xu – Stockholm University

NanED | Joint Initial Meeting

Pontedera, 29st- 30st November 2021

Outline

- Crystal engineering
- Phase analysis (ESR 11)

Lei Wang

FZU: Dynamical refinement on organics Supervisor: **P. Brázda**

• Structure determination of drug targets

UBA: 3D ED ab-initio phasing on proteins
Supervisor: J-P. Abrahams
eBIC: Single particle cryo-EM
Supervisor: P. Zhang
Thermo Fisher: State of art of cryo-TEM

• Protein-Ligand interaction

AstraZeneca: Protein ligand interaction Supervisor: H. Käck

A) Automated, High throughput phase and structure analyses

B) Reliable and Robust 3DED/MicroED Protocol

β-glycine
 Polym
 Crysta
 Phase
 Phase
 FZU: Dyna
 Superviso

Alignment with Our Research at SU

Molly Lightowler

Jiaoyan Xu Jingjing Zhao

ChemRxiv 2021 Submitted

Nat. Commun. 2021

Dr. Gerhard Hofer

Laura Pacoste

Nat. Commun. 2021

Filtered ED pattern

TEM

Detector

aRxiv **2021**

GUI

Instamatic

Holder

Python

Data

Dr. Mathieu Coincon

MicroED

@

Viktor Bengtsson

Conclusion

AutoDIALS allows indexing and integrating large amounts of electron diffraction data.

Future improvements of the program will be optimisation of the default processing parameters and providing clearer statistics. The goal is to integrate clustering into the pipeline.

Acta D. 2019

Small Molecules

Small Organic Molecules – Sample Prep.

- Routine structure determination
- Reliable structure models
- Need more attention to structural details
 - ADPs
 - Data completeness
 - Hydrogens
- Typical turn around: 1-2 days

carbamazepine ethisterone cinchonine nicotinic acid biotin (+)-limaspermidine E. Van Genderen et al. Acta. A, 2016 proaesterone bismuth subgallate Note: Structure solved with MicroED, refined against PXRD data carbamazepine acetaminophen Y. Wang et al. Chem. Comm., 2017 C.G. Jones et al. ACS Cent. Sci., 2018 β-glycine epicorazine A paracetamol α-glycine glycine y-glycine MBBF, IRELOH T. Grüne et al. Angew. Chem., 2018 M.T.B Clabbers et al. Acta. A., 2019 E.T. Broadhurst et al. IUCrJ, 2020

Clabbers and Xu, Drug Discovery Today: Technology 2020

- Sample source: Sugar cube for coffee and tea
- Data collection parameters:
 - Rotation speed: 1.13 °/s
 - Exposure: 0.3 s/frame
 - Total range: ~ 60° per dataset (190 frames)
 - Electron dose rate: 0.08 e⁻/Å²/s
 - Total electron dose: ~ 5 e⁻/Å²
- Data collected at both room temperature and 100K
- In average, 15 datasets per 4 hour session

Refinement					
	Sucrose	Sucrose Single Dataset	Sucrose @ 100K		
а	10.86	10.86	10.91		
b	8.71	8.71	8.78		
С	7.76	7.76	7.85		
β [°]	102.9	102.9	103.4		
Resolution [Å]	0.77	0.77	0.77		
No. of total refined data	3203	1778	2093		
No. of parameters	242	94 (isotropic)	102 (isotropic)		
No. of restraints	5	1	1		
$R_1 Fo > 4\sigma$ (Fo)	0.1438	0.2890	0.2097		
R ₁ all	0.1666	0.3183	0.2197		
R _{int}	0.5544	0.0640	0.5205		
GooF	1.017	0.974	1.203		
wR ₂	0.3965	0.6649	0.4530		

Sucrose Data Collection at **Room Temperature** 4 x playback speed

Sucrose Data Collection at **100 K** 4 x playback speed

Yang et. al., Symmetry 2021

Yang et. al., Symmetry 2021

	H ₄ ABTC	H₄ABTC @ 100K
	Data Processing	
Number of crystals	5	9
а	13.47	13.52
b	14.63	14.63
c	14.65	14.70
α [°]	98.55	99.40
β [°]	105.90	106.06
γ [°]	112.92	113.99
Resolution [Å]	0.80	0.90
Ι/σ	4.77 (1.99)	2.63 (1.35)
CC _{1/2} [%]	97.1* (88.4*)	90.8* (73.0*)
Redundancy	4.89	7.08
R _{meas}	0.209 (0.595)	0.395 (0.648)
No. of reflections	48822	48984
No. of unique reflections	8936	12999
Space group	<i>P</i> -1	<i>P</i> -1
Completeness	0.897 (0.814)	0.935 (0.752)
	Refinement	
Resolution [Å]	0.83	0.90
No. of total refined data	8143	6740
No. of parameters	767	704
No. of restraints	0	0
$R_1 Fo > 4\sigma$ (Fo)	0.1842	0.2199
R ₁ all	0.2102	0.2648
R _{int}	0.1843	0.3353
GooF	1.144	1.862
wR ₂	0.4531	0.4773

78 unique atoms

Ave. bond Lengths: C-C: 1.52(2) Å C-C in benzene: 1.43(2) Å C-O: 1.31(3) Å C=O: 1.27(3) Å C-N: 1.45(2) Å N=N: 1.27(2) Å

- M. Lightowler et al. Angewandte Chemie 2021

Indomethacin

δ-Indomethacin ٠

100 µm

50 µm

Misunderstood for 47 years ٠

Solution δ

Sun Yat-sen University, China Associate Prof. Ming Lu Ms. Shuting Li

Molly Lightowler

New Phase: θ-Indomethacin b-axis: 58.98 Å

Indomethacin and Other Examples

Structure determination, thermal stability and dissolution rate of δ -indomethacin

Iryna Andrusenko ^a, Victoria Hamilton ^b, Arianna E. Lanza ^a, Charlie L. Hall ^b, Enrico Mugnaioli ^a, Jason Potticary ^b, Asma Buanz ^c, Simon Gaisford ^c, Anna M. Piras ^d, Ylenia Zambito ^d ^A ^{III}, Simon R. Hall ^b ^A ^{III}, Mauro Gemmi ^a ^A ^{III}

Solution-**δ**-Indomethacin Independently solved in Mauro Gemmi's group

2594 doi:10.1017/S1431927621009223 Microsc. Microanal. 27 (Suppl 1), 2021 © Microscopy Society of America 2021

Small Molecule Microcrystal Electron Diffraction (MicroED) for the Pharmaceutical Industry – Results from Examining Over Fifty Samples

Jessica Bruhn¹, Giovanna Scapin², Anchi Cheng¹, Thejusvi Ganesh¹, Sargis Dallakyan¹, Brandon Read¹, Travis Nieusma³, Kyle Lucier³, Megan Mayer³, Nicole Chiang³, Nicole Poweleit³, Philip McGilvray³, Timothy Wilson³, Michael Mashore³, Camille Hennessy³, Sean Thomson³, Clinton Potter³ and Bridget Carragher⁴

Putting MicroED to the Test: An Account of the Evaluation of 30 Diverse Pharmaceutical Compounds

Jessica E. Burch^{1*}, Austin G. Smith^{2†}, Seb Caille², Shawn D. Walker^{2†}, Ryan Wurz³, Victor J. Cee^{3†}, Jose Rodriguez¹, D. Gostovic⁴, Kyle Quasdorf^{2*}, Hosea M. Nelson^{1,5*}

Broadhurst et al. *IUCrJ* 2019 University of Edinburgh, UK Mr. Edward Broadhurst, Prof. Simon Parsons, Dr. Fabio Nudelman

On-grid Crystallizaton – Carbamazepine

Carbamazepine dihydrate:

A dibenzazepine that acts as a sodium channel blocker

20 s, plunge frozen

20 s, Room Temperature Crystallization time ~ 1-2 min

University of Edinburgh, UK

Mr. Edward Broadhurst Prof. Simon Parsons Dr. Fabio Nudelman

Manuscript Submitted

Relative Stability: CBZDH, III > I > V > IV > II

180 seconds

13

carbamazepine dihydrate

Macromolecules

Macromolecules – Screening

Macromolecules – Specimen Preparation

preparation

Clabbers and Xu, Acta D 2020

44% PEG 400, Viscous Mother Liquor

flask

a

20 µm

Zhao et al. Nat. Commun. 2021

17

Macromolecules – Preassis

Zhao et al. Nat. Commun. 2021

Jingjing Zhao

18

Macromolecules – SaR2lox

- Sulfolobus acidocaldarius R2-like ligand-binding oxidase
- Phased from a homologue of 35% sequence identity
- First unknown protein structure solved by 3D microcrystal ED

Hugo Lebrette

Electrostatic scattering potential maps 2Fo-Fc (1.0σ)

Resolution range	29.00-3.00 (3.08-3.00)
Space group	P2 ₁ 2 ₁ 2
a, b, c (Å) α, β, γ (°)	63.31, 108.93, 48.17 90.00, 90.00, 90.00
Multiplicity	32.4 (8.5)
Completeness (%)	62.8 (52.9)
Mean I/σI	6.12 (0.75)
R _{meas}	0.561 (3.995)
CC _{1/2}	0.981 (0.597)
Reflections used in refinement	4423 (343)
Reflections used for R _{free} *	233 (15)
Rwork	0.3179 (0.4299)
R _{free} *	0.3347 (0.4623)
macromolecules	2241
ligands	2
Protein residues	274
RMSD(bonds) **	0.002
RMSD(angles) **	0.41
Ramachandran favoured (%)	96.67
Ramachandran allowed (%)	3.33
Ramachandran outliers (%)	0.00
Rotamer outliers (%)	0.82
Clashscore	10.26
Average B-factor	48.37

Max Clabbers

Macromolecules – MyD88

TLR signaling

3DED/MicroED

X-ray: Monomer

20

Max Clabbers

Macromolecules – MyD88

Alphafold 2 Predictions

 Target (7BEQ)

 99%
 4EO7 (chain A)

 30%
 2JS7 (chain A)

 2Z5V (chain A)

Molecular Replacement

Image Courtesy: Ronan Keegan

Image Courtesy: Ronan Keegan

Macromolecules – Protein Crystal Gallery

Courtesy: Mathieu Coinçon

Electron microscopy centre, MMK, SU

JEOL 2100 (200kV) LaB₆ + **Timepix** Human **C**arbonic **A**nhydrase **II**

2.3 Å

Instrumentation

Themis Z (300kV) FEG + **Oneview** Lysozyme

2.2 Å

Themis Z (300kV) FEG Gatan Energy Filter + Ultrascan Lysozyme Data within 3 Å

Taimin Yang

Instrumentation

Marta Carroni

Gerhard Hofer

Talos Arctica + CETA (high dose), Arginine Kinase

Krios- β + CETA-D (EPU-D), Arginine Kinase

24

The Stage is Set for

Structure-Based Drug Discovery by 3D ED

Strucutre-Based Drug Discovery

Electron crystallography

- A series of trials (decades)
- Formulation/tableting
- Clinical trials

Strucutre-Based Drug Discovery

Structure-Based Drug Discovery

LΟ

R. Yan et al., Science 10.1126/science.abb2762 (2020)

Α

Structure-Based Drug Discovery

Credit: Diamond Light Source

Pagika 1

Data analysis and model building

2.5 nL or 25 nL

Crystal harvesting: Shifter

29

Destination plate well

Source plate well

Eluid TYPE Fluid TYPE B Fluid TYPE C

X-ray data collection: beamline I04-1

Xchem – Diamond Light Source

Structure-Based Drug Discovery

- 19 non-covalent hits in the active site
- 39 covalent hits in the active site
- 2 hits in the dimer interface, one in a calculated hotspot

Credit: Diamond Light Source

Structure-Based Drug Discovery by 3D ED

Motivations:

- Small crystals -> better diffusion
 - Organic solvent
 - Diffusion rate
 - Occupancy
- Availability of TEMs/cryo-TEMs
- Hydrogen and charge

Challenges:

- Data completeness
- Beam damage
- Reliability
- Resolution: 2.5Å -> 2.0Å
- Throughput

https://www.youtube.com/watch?v=omFOLG5Z5w4

Lei Wang

Structure-Based Drug Discovery by 3D ED

Data collection

Space group Cell dimensions a, b, c (Å) α, β, γ (°) Resolution (Å) **R**_{merge} I/σI $CC_{1/2}$ Completeness (%) Redundancy Refinement Resolution (Å) No. reflections R_{work} / R_{free} No. atoms Protein Ligand/ion Water **B**-factors Protein Ligand/ion Water R.m.s. deviations Bond lengths (Å) Bond angles (°)

P2₁ 42.11, 41.39, 72.80 90.00, 104.449, 90.00 35.70-2.30 (2.36-2.30) 0.388 (0.573) 4.06 (1.53) 0.947 (0.464) 73.2 (42.5) 4.95 (1.98) 35.70-2.30 14305 0.211/0.256 2049 18 27 22.24 23.17 15.80 0.002

0.708

Structure-Based Drug Discovery by 3D ED

- High resolution data, better than 2Å
- On-grid crystallization
- Several ligands per grid

- Cocktail soaking / Ligand Libraries
- High throughput data collection and analysis (ESR 11)
- Study new drug targets Partners

Pearce et al. Nat. Commun. 2017

Acknowledgements

Emails: xzou@mmk.su.se, hongyi.xu@mmk.su.se

Dr. Hugo Lebrette Vivek Srinivas Prof. Martin Högbom

Martin Högbom

Hugo Lebrette

<u>SciLifeLab, SU</u> Dr. Marta Carroni Dr. Mathieu Coincon Dr. Jose Miguel de la Rosa

Marta Carroni

Mathieu Coincon

